(a	(i)	rate at t_2 less than at t_1 or the rate decreases (1)	
		rate at t_3 zero/reaction stopped (1)	[2]
	(ii)	rate at t_2 less than at t_1 because concentration of hydrogen peroxide is less at t_2 or concentration of hydrogen peroxide is decreasing. (1)	
		(rate at t_3 zero/reaction stopped because) hydrogen peroxide is used up (1)	[2]
(b)	(i)	steeper and must come from the origin (1) final volumes the same (1)	[2]
	(ii)	Any two from: steeper curve because of a faster rate faster rate because of increased surface area same amount/volume/mass/no of mol of hydrogen peroxide ecf for M1 for a shallower curve because of slower rate.	[2]
(c)	filter	r (and rinse/wash) (1)	
	dry	manganese (IV) oxide (1)	
	weig	gh/measure mass manganese(IV) oxide after reaction (1)	
	the	mass should be 0.1g or unchanged. (1)	[4]
(d)	num num	hber of moles of O ₂ formed = $0.096/24 = 0.004$ (1) hber of moles of H ₂ O ₂ in 40 cm ³ of solution = $0.004 \times 2 = 0.008$ (1)	
	con	centration of the hydrogen peroxide in mol/dm ³ = $0.008/0.04 = 0.2$ (1)	[3]
			[Total:15]

1

2 (a (i) large / high surface area

high collision rate / collide more / many collisions (between oxygen molecules and aluminium atoms) **NOT** faster collisions

(ii) concentration of reactants decreases

[1] [1]

[1]

[1]

allow one mark **ONLY** *for:* for reactants used up **or** amount of reactant decreases

(iii) any three of four from one strand:

M1	increase in temperature		
M2	molecules move faster or	particles have more energy	
М3	higher collision rate		
M4	more successful collisions or	more particles have enough energy to react/ <i>E</i> a	

(b) (i) flour or wood dust or coal dust or carbon or sugar

[3]

[1]

(ii) any three from:

powder and larger pieces / different sized particles use suitable named solid, e.g. magnesium suitable named solution, e.g. named acid **or** copper sulfate(aq) result – powder reacts faster than larger pieces **NOT** Cu (with acid); K / Na with anything

[3]

3	(a	(i)	any three from: particles have more energy; move faster; collide more frequently; more successful collisions; accept: atoms or molecules for particles	[3]
			not: vibrate more	
		(ii)	reaction faster with temperature increase; enzymes denatured / destroyed; not: killed	[1] [1]
	(b)	(bigger initial gradient; same final volume of nitrogen;	[1] [1]
		(ii)	decrease / slows down;	[1]
		(iii)	<u>concentration</u> of organic compound decreases; compound used up = [1] or: fewer particles; collision rate decreases;	[2]
	(c)	(carbon monoxide-incomplete combustion; carbon - containing fuel / fossil fuel / petrol;	[1] [1]
			oxides of nitrogen - oxygen and nitrogen react; at high temperature / in engine; not : in exhaust	[1] [1]
		(ii)	carbon monoxide to carbon dioxide; oxides of nitrogen to nitrogen; correct balanced equation;	[1] [1] [1]
				[Total: 17]

(a	(i)	correct structure of an isomer e.g. 2-chloropropane;	[1]
	(ii)	chlorine; light / heat / lead tetraethyl;	[1] [1]
	(iii)	could produce 2-chloropropane; could produce HC <i>l</i> ; or could produce dichloropropanes = [2]	[1] [1]
(b)		add silver nitrate / lead nitrate; yellow precipitate; note: do not insist on presence of dilute nitric acid	[1] [1]
	(ii)	propanol / propan-1-ol;	[1]
(c)	(i)	for A; reaction slower; decreased collision rate; less bromobutane present / concentration of bromobutane less / less reacting particles; any two accept: reverse arguments for B	[2]
	(ii)	halogens $Cl > Br > I$ reactivity / reactivity decreases down group; organic halides $I > Br > Cl$ / reactivity increases down group; opposite without explanation = [1]	[1] [1]
	(iii)	any three from: less energy; particles move slower; less collisions / fewer particles have energy to react / fewer successful collisions; slower rate;	[3]
		[Tota	l: 15]

4

5	(a (i)	$2Li + 2HI \rightarrow 2LiI + H_2$	[1]
	(ii)	zinc carbonate + hydriodic acid \rightarrow zinc iodide + carbon dioxide + water	[1]
	(iii)	$MgO + 2HI \rightarrow MgI_2 + H_2O$	[1
	(b) rea cor	ction 1 is redox / Li/2HI reaction nd reason either oxidation number/state / electron transfer	[1] [1]
	(c) with	n hydriodic acid – iodine formed / goes <u>dark brown</u> / grey/black solid	[1]
	not	t purple vapour not purple/black solution	
	with / br	n hydrobromic acid – bromine formed / goes orange / yellow / brown / reddish brown / own vapour	red [1]
	not	e can accept brown for iodine provided bromine is different orange/brown etc.	
	(d)	the reaction is exothermic / reaction produces heat/energy all the sodium hydroxide used up/neutralised / reaction has stopped	[1] [1]
	(ii)	adding colder acid / no more heat produced if not given in (d)(i) any comments such as "reaction has stopped" can gain mark	[1]
	(iii)	1.33 / 1.3 / 1.3333 (mol/dm ³) scores both marks not 1.34 for a correct method – $M_1 V_1$ / moles of NaOH = 0.02 with an incorrect answer only [1]	[2]